首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1164篇
  免费   187篇
  国内免费   42篇
化学   53篇
力学   119篇
综合类   20篇
数学   914篇
物理学   287篇
  2024年   2篇
  2023年   26篇
  2022年   27篇
  2021年   42篇
  2020年   48篇
  2019年   39篇
  2018年   41篇
  2017年   61篇
  2016年   60篇
  2015年   48篇
  2014年   76篇
  2013年   114篇
  2012年   68篇
  2011年   62篇
  2010年   53篇
  2009年   69篇
  2008年   54篇
  2007年   65篇
  2006年   68篇
  2005年   61篇
  2004年   41篇
  2003年   43篇
  2002年   34篇
  2001年   25篇
  2000年   33篇
  1999年   27篇
  1998年   22篇
  1997年   17篇
  1996年   12篇
  1995年   9篇
  1994年   7篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有1393条查询结果,搜索用时 15 毫秒
61.
In this paper, we consider the solution of a large linear system of equations, which is obtained from discretizing the Euler–Lagrange equations associated with the image deblurring problem. The coefficient matrix of this system is of the generalized saddle point form with high condition number. One of the blocks of this matrix has the block Toeplitz with Toeplitz block structure. This system can be efficiently solved using the minimal residual iteration method with preconditioners based on the fast Fourier transform. Eigenvalue bounds for the preconditioner matrix are obtained. Numerical results are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
62.
This paper introduces a robust preconditioner for general sparse matrices based on low‐rank approximations of the Schur complement in a Domain Decomposition framework. In this ‘Schur Low Rank’ preconditioning approach, the coefficient matrix is first decoupled by a graph partitioner, and then a low‐rank correction is exploited to compute an approximate inverse of the Schur complement associated with the interface unknowns. The method avoids explicit formation of the Schur complement. We show the feasibility of this strategy for a model problem and conduct a detailed spectral analysis for the relation between the low‐rank correction and the quality of the preconditioner. We first introduce the SLR preconditioner for symmetric positive definite matrices and symmetric indefinite matrices if the interface matrices are symmetric positive definite. Extensions to general symmetric indefinite matrices as well as to nonsymmetric matrices are also discussed. Numerical experiments on general matrices illustrate the robustness and efficiency of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
63.
Frank Pörner 《Optimization》2016,65(12):2195-2215
We study an iterative regularization method of optimal control problems with control constraints. The regularization method is based on generalized Bregman distances. We provide convergence results under a combination of a source condition and a regularity condition on the active sets. We do not assume attainability of the desired state. Furthermore, a priori regularization error estimates are obtained.  相似文献   
64.
65.
In this paper, we propose a Quasi-Orthogonal Matching Pursuit (QOMP) algorithm for constructing a sparse approximation of functions in terms of expansion by orthonormal polynomials. For the two kinds of sampled data, data with noises and without noises, we apply the mutual coherence of measurement matrix to establish the convergence of the QOMP algorithm which can reconstruct $s$-sparse Legendre polynomials, Chebyshev polynomials and trigonometric polynomials in $s$ step iterations. The results are also extended to general bounded orthogonal system including tensor product of these three univariate orthogonal polynomials. Finally, numerical experiments will be presented to verify the effectiveness of the QOMP method.  相似文献   
66.
Two-phase image segmentation is a fundamental task to partition an image into foreground and background. In this paper, two types of nonconvex and nonsmooth regularization models are proposed for basic two-phase segmentation. They extend the convex regularization on the characteristic function on the image domain to the nonconvex case, which are able to better obtain piecewise constant regions with neat boundaries. By analyzing the proposed non-Lipschitz model, we combine the proximal alternating minimization framework with support shrinkage and linearization strategies to design our algorithm. This leads to two alternating strongly convex subproblems which can be easily solved. Similarly, we present an algorithm without support shrinkage operation for the nonconvex Lipschitz case. Using the Kurdyka-Łojasiewicz property of the objective function, we prove that the limit point of the generated sequence is a critical point of the original nonconvex nonsmooth problem. Numerical experiments and comparisons illustrate the effectiveness of our method in two-phase image segmentation.  相似文献   
67.
This paper studies an inverse hyperbolic problem for the wave equation with dynamic boundary conditions. It consists of determining some forcing terms from the final overdetermination of the displacement. First, the Fréchet differentiability of the Tikhonov functional is studied, and a gradient formula is obtained via the solution of an associated adjoint problem. Then, the Lipschitz continuity of the gradient is proved. Furthermore, the existence and the uniqueness for the minimization problem are discussed. Finally, some numerical experiments for the reconstruction of an internal wave force are implemented via a conjugate gradient algorithm.  相似文献   
68.
We consider a class of quasilinear elliptic boundary problems, including the following Modified Nonlinear Schrödinger Equation as a special case: $$\begin{cases} ∆u+ \frac{1}{2} u∆(u^2)−V(x)u+|u|^{q−2}u=0 \ \ \ in \ Ω, \\u=0 \ \ \ \ \ \ \ ~ ~ ~ on \ ∂Ω, \end{cases}$$ where $Ω$ is the entire space $\mathbb{R}^N$ or $Ω ⊂ \mathbb{R}^N$ is a bounded domain with smooth boundary, $q∈(2,22^∗]$ with $2^∗=2N/(N−2)$ being the critical Sobolev exponent and $22^∗= 4N/(N−2).$ We review the general methods developed in the last twenty years or so for the studies of existence, multiplicity, nodal property of the solutions within this range of nonlinearity up to the new critical exponent $4N/(N−2),$ which is a unique feature for this class of problems. We also discuss some related and more general problems.  相似文献   
69.
An excruciating issue that arises in mathematical, theoretical and astro-physics concerns the possibility of regularizing classical singular black hole solutions of general relativity by means of quantum theory. The problem is posed here in the context of a manifestly covariant approach to quantum gravity. Provided a non-vanishing quantum cosmological constant is present, here it is proved how a regular background space-time metric tensor can be obtained starting from a singular one. This is obtained by constructing suitable scale-transformed and conformal solutions for the metric tensor in which the conformal scale form factor is determined uniquely by the quantum Hamilton equations underlying the quantum gravitational field dynamics.  相似文献   
70.
Full waveform inversion is an advantageous technique for obtaining high-resolution subsurface information. In the petroleum industry, mainly in reservoir characterisation, it is common to use information from wells as previous information to decrease the ambiguity of the obtained results. For this, we propose adding a relative entropy term to the formalism of the full waveform inversion. In this context, entropy will be just a nomenclature for regularisation and will have the role of helping the converge to the global minimum. The application of entropy in inverse problems usually involves formulating the problem, so that it is possible to use statistical concepts. To avoid this step, we propose a deterministic application to the full waveform inversion. We will discuss some aspects of relative entropy and show three different ways of using them to add prior information through entropy in the inverse problem. We use a dynamic weighting scheme to add prior information through entropy. The idea is that the prior information can help to find the path of the global minimum at the beginning of the inversion process. In all cases, the prior information can be incorporated very quickly into the full waveform inversion and lead the inversion to the desired solution. When we include the logarithmic weighting that constitutes entropy to the inverse problem, we will suppress the low-intensity ripples and sharpen the point events. Thus, the addition of entropy relative to full waveform inversion can provide a result with better resolution. In regions where salt is present in the BP 2004 model, we obtained a significant improvement by adding prior information through the relative entropy for synthetic data. We will show that the prior information added through entropy in full-waveform inversion formalism will prove to be a way to avoid local minimums.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号